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On the causality of a dilute gas as a dissipative relativistic 
fluid theory of divergence type 

Gabriel B Nagyt and Oscar A Red@ 
Facultad de Matematica AstrOnomia y Flsica, Universidad Nacional de C&doba, Dr Medina 
Aliende y Haya de la Torre. Ciudad Universitaria, (5030) Cdrdoba, Argentina 

Received 9 June 1995 

Abstract. The dissipative relativistic fluid theories of divergence type are the simplest theories 
which are physically consistent and have a well posed-hyperbolic-initial value formulation, 
since they can be constructed from a single scalar function x and a dissipation-source tensor 
lob, both of them functions of fluid variables. In this work we find the expression for this 
genemting function for the case of a dilute gas using only the knowledge of an equilibrium 
fluid state, which is known from the kinetic theory of dilute gases. The generating function is 
obtained by imposing some conditions on the divergence theory, related h3 the symmetry +nd 
m e  of the tensor of the fluxes., These conditions come naturally fmm kinetic theory, and are 
needed to correctly describe a dilute gas. We prove that in the neighbourhood of the equilibrium 
states, these divergence type equations for a dilute gas are causal for Boltzmann, Fermi or Bose 
equilibrium distribution functions. 

1. Introduction 

The earliest theories of relativistic dissipative fluids developed by Eckart [I] and Landau and 
Lifshitz [2] are now known to be physically unacceptable, because they fail to provide causal 
evolution equations and their equilibrium states are unstable, in the sense that small spatially 
bounded departures from equilibrium at one instant of time will diverge exponentially with 
time 131, at a rate incompatible with the observed behaviour of normal fluids. In those 
theories one of the basic assumptions was that the usual fluid variables (a four velocity 
and two thermodynamic variables) were the only dynamical~fields. More recently attempts 
have been made to formulate acceptable dissipative relativistic fluid theories involving an 
extended set of thermodynamic variables. In these theories [MI, the dynamical variables 
are the entire stress-energy tensor Tab and the particle-number current N O .  A particular set 
of these theories, in which all the dynamical equations for the~variables TOb and Nu can be 
written as total divergence equations, is known as divergence type theories [4.5,7]. 

This pdcu la r  set of theories has some physically nice properties. By construction, the 
dynamical equations of these theories are symmetric, and it is straightforward to determine 
the conditions under which the full nonlinear evolution equations are hyperbolic and causal. 
These dynamical equations are determined~giving a single generating function x,'and a 
dissipation-source tensor Pb. Besides their simplicity this type of equation has the extra 
advantage that by being of divergence form, discontinuous solutions (shocks) may be given 
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mathematical meaning, which is very important since solutions to these equations generally 
evolve to form shocks. 

To decide whether these theories are physically satisfactory it would be useful to see 
whether they are able to describe the simplest physical situation where this can be applied, 
namely a dilute gas nearby equilibrium~states. This implies relating? the generating function 
x and the dissipation-source tensor 1'' with microphysical quantities such as the distribution 
function f and the collision term C from kinetic theory. One way to do this was proposed 
by Liu et al [5]. They relate tensors in divergence type theory with the three first moments 
of the distribution function. This identification allows the generating function x to be 
determined near equilibrium, in terms of its values in an equilibrium state X I E .  However, 
if the distribution function in an equilibrium state fla is known from kinetic theory, the 
generating function in an equilibrium state XIE can be calculated; so, it is possible to build 
the generating function x near equilibrium up to the order needed to show causality in the 
no-equilibrium variables, with knowledge of the equilibrium distribution function f l ~  only. 

The purposes of this paper are essentially three: first, to determine the generating 
function near equilibrium, following the ideas in [5], with the only knowledge of the 
equilibrium dishibution function of the dilute gas; second, to prove causality for Boltzmann, 
Bose and Fermi gases; and, third, to show that our results about causality for Boltzmann's 
gas agree with previous ones [SI. They also agree with previous results in Stewart [9]. 
Nevertheless those results were obtained in a different way from that presented here. 

In section 2.1 we review the formulation of dissipative relativistic fluid theories of 
divergence type, by Geroch and Lindblom [4] and Pinnisi 171. In section 2.2 we review 
basic concepts on kinetic theory. In section 3 we build a divergence type theory that 
describes a dilute gas. In section 4 we study the causal properties of these theories. In 
section 5 we discuss some results. 
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2. A brief review of two known theories 

2.1. Dissipativefluid theories of divergence gpe 

Following [4,5,7], we define a dissipative fluid theory of divergence type as a theory with 
the following three properties. 

(i) The dynamical variables can be taken to be the particle-number current Nu,  and the 
(symmetric) stress-energy tensor Tub. 

(ii) The dynamical equations are 

V,N" = 0 (2.1) 
0" T"b = 0 (2.2) 
0, Aabc = ZhC (2.3) 

where the tensors Avhc (tensor of fluxes) and I" (dissipation-source tensor) are local 
functions of the dynamical variables Nu and Tub, and are trace free and symmetric in 
the last two indices. 

(iii) There exists an entropy current s' (local function of Nu and Tub) which, as a 
consequence of the dynamical equations, must satisfy 

~~~~ 

V"SU = U  

where U is some positive function of NU and Tub. 

t Up to the order in no-equilibrium variiables needed to build the corresponding system of linearized equations 
around an equilibrium state. 
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It can be'seen [4,7] that any theory with these three properties is determined by 
specifying a single scalar generating function x and the tensor I O b  as functions of a new 
set of dynamical variables <, 5". 5"' (with the latter being trace free and symmetric). The 
dynamical equations for these variables are (2.1)-(2.3), with 

while the entropy current is determined by 

with the source given by 

a = -cab IUb 

It is helpful to introduce C A  to represent the collection of dynamical variables: 
C A  = (<, <", cub). In the same way we introduce la to represent the dissipation-source 
tensor: l a  = (O,O, lab). Equations (2.1)-(2.3) can then be written in this notation as 

M ~ s v " < ~  = l a  (2.7) 
with 

The system of equations (2.7) is then automatically symmetric since matrix Mi, is 
symmetric in indices A ,  B due to the fact that partial derivatives commute. We say that 
a symmetric system is hyperbolic in an open set of fluid states if there exists a future- 
directed timelike o" (possible state dependent), such that @,Mi, in that neighbourhood is 
negative definite. A symmetric system is causal in an open set of fluid states if o a M i B  
in that neighbourhood is negative definite for all future-directed timelike 0'. The property 
of hyperbolicity ensures that system (2.7) has a well-posed initial-value formulation, while 
causality ensures that no fluid signals can propagate faster than light. It is natural for 
a relativistic dissipative fluid theory to demand causality; this implies conditions on the 
generating function x .  

Following Geroch and Lindblom [4], we define an equilibrium state as one on which 
the dynamics is time reversible. They conclude that in an equilibrium state of the theory the 
dissipation-source tensor I u h  and the dynamical field cub must vanish. They also conclude 
that at equilibrium Vac = ~ O  and V(&b, = 0 (that is, the variable <" is a Killing vector). 
This concludes the review of the main results that we need from [4]. 

2.2. Kinetic theory 

We consider a distribution of identical particles in the spacetime. The particles interact via 
short-range forces, idealized as point collisions, and via the gravitational field. A distribution 
function f ( x " ,  p") is defined [6] by the statement that 

P" f-dC, d o  
m 
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is the number of world-lines cutting an element of 3-surface d& and having &momenta 
p' which terminate on a cell of 3-area dw on the mass shell p u p u  = -m2. The distribution 
function is the solution of the relativistic transport equation 
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with C the collision term defined requiring that 
d o  

C(xd ,  p d ) - f i d 4 X  
m 

be the number of particles in the momentum'range dw around pd which are created by 
collisions in the 4-volume &d4x, around the point of coordinates x d .  

The collision term C can be any arbitrary function provided that the resulting theory 
satisfies certain physical properties. The following general properties are usually required. 

(i) The form of C is consistent with 4-momentum and particle number conservation at 
collisions. 

(ii) The collision term C yields a non-negative expression for the entropy production. 
To relate macroscopic quantities to the distribution function it is useful to introduce the 

n-moment associated with f, that is the following totally symmeuic hierarchy of tensors 

p"' .  . . p"" f d o  n = 0,. . . , W .  
J"l'""' = s 

By virtue of the transport equation, the (n + 1) moment satisfies 

U (2.8) p , . . . d "  - I" I... 0. - 
with the source tensor Iu1.'''* defined as 

I"I"'"a s pa' . . . p'nCdw. 

Those moments are not independent quantities because they satisfy the following relations: 

(2.9) 
Following [lo], this is done by building an 

appropriate collision term where elastic binary conditions give the dominant contribution. 
Assuming Boltzmann's ansatz, i.e. incoming particles are uncorrelated and this probability is 
proportional to the product f (xu,  p") f (xu ' ,  p"') dwdw', Boltzmann's form of the collision 
term is given by 

C = W ( P " ,  P"'; P : ,  pp')ff(~',  p' ; ) f (x ' ,  pp') - f W ,  p')f(x', p"'))dw'dwidw; 

where W(p",  p'"; p y ,  p f )  is the transition rate for two particles with incoming momenta 
p a  and p'' that are scattered. with outgoing momenta py and pp'. This transition probability 
is symmetric in (p", p"') and in (py, yp'), and satisfies the microscopic' reversibility: 
W ( p a ,  p"; p y ,  p f )  = W ( p f ,  p f ;  p'. p " ) .  Fermi or Bose statistics can be incorporated 
by introducing occupation probability factors A(x", p ; )  and A(x', p f )  for the final states 
to allow Pauli exclusion or Bose-Einstein effects. The occupation probability factor is 
defined as 

. .  guju, = -m2 J"l""A-1 r , j = l . . . n  i#j. J" I... a ,... Y ,... (I, 

We now describe a dilute gas. 

s 

h3 
A(x", p a )  = 1 + E ;  f (x", p") 

where h is Planck's constant, w is the spin-weight (number of available states per quantum 
phase-cell) and E is 1 for bosons and -1 for fermions. 
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By construction, this collision term satisfies property (i): defining the particle-number 
current and the stress+nergy tensor respectively as the two first moments of the distribution 
function and using (2.8) 

Nu J" Tub Jab, (2.10) 

It also satisfies property (ii): defining an entropy current by 

6J fIn(h3f)  -~-Aln(A) 
eh3 

1 
S' (x') z - - 1 @p" d o  

m 

it can be checked that 

vasa -- 1 y(f)C(f) d o  2 0 where, y(f) E @'(f) = In ($1 . m 
Now, the local equilibrium states are defined requiring that entropy production vanishes. 

This implies [6] 
f f 1  

k kT 
C(f0) = 0 or y(fo) =yo  = - + --u'p,. 

It can be seen that one condition implies the other 11 11. From the second one it is clear 
that this leads to a unique distribution function at equilibrium, namely 

k kT 
(2.11) 

where T is the absolute temperature, o( is a relativistic chemical potential per unit time 
(Y = [ (p  4- p ) / n T ]  - s (with p the energy density, p the pressure, s the entropy and n 
the particle-number density), k is Boltzmann's constant, q = o / h 3  with o = (2u + 1) for 
particles with spin vhl(2ir) and E is 1 for bosons and -1 for fermions, as above. 

The distribution function for non-equilibrium states is unknown but it is possible to 
obtain information for small deviations from local equilibrium. The procedure is known as 
the Grad 14-moment approximation [6]. The main idea is to do a 14-parameter variation 
on y( f )  around its equilibrium value yo, so it has the form 

where the 14-parameters are (, (", tu;, functions of xa,  with Cub trace free and symmehict, 
and such that at equilibrium 

uI1 
$o=m $00 = 7 &kb =o. 

Then it can be checked [61 that it i s  possible to obtain a closed system of equations for the 
parameters of the perturbation, considering equations (2.8) only for the three first moments. 
So the system of equations can be written as 

(2.12) 
(2.13) 
(2.14) 

where the symbol ( )  means symmetrization and trace free. 

($, &.$ob)  of a dilute gas near an equilibrium state. 

t Because the trace variation in ea,, is equivalent to a 

We may summarize all this by stating that (2.12)-(2.14) are the equations for variables 

variation. 
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3. Dilute gas as a divergence type theory 

In this section we will determine an expression for the generating function of a divergence 
type theory for states in the neighbourhood of equilibrium. This is done by imposing 
symmetry conditions on a certain tensor, as it is necessary to relate it with the third 
momentum tensor in kinetic theory. More specifically, recalling the assignation (2. IO) 
for the first two moments of the distribution function, then the system of equations for the 
three first moments (2.12)<2.14) could be thought as a divergence type theory (2.1)-(2.3). 
To do so, we must relate tensors JUbe and Anbc. Taking into account equations (2.4)-(2.6). 
this relation between tensors JU" and AnbC impose$ a condition on the generating function 
x. To find this relation, we recall (2.9), that is 
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J Y h h  = -m2 J' = -m2N" 

and if we assume that 
I " h  = I " h  

then the only possible relation between these tensors for the dynamical equation (2.3) to be 
equivalent to (2.14) is 

Since Juhc is totally symmetric, this condition imposes conditions in Aobc and Nu (such 
that the right-hand side of (3.1) is totally symmetric), which, in turn, impose conditions 
on the generating function x. These conditions are equivalent to the following system of 
equations for x: 

Where should these equations hold? One could argue that since the above identification 
Ju -+ N u ,  Job c) is usually taken to hold only to first order off equilibrium, this should 
also be valid to that order. This requirement and the appropriate boundary conditions (the 
correct classical limit, as we show below) imply a unique generating function up to the 
order needed to study causality at equilibrium. One could try to push the identification 
further. Will this be possible? That is, will there exist exact solutions of (3.2); and if so, 
will they be essentially determined uniquely by the values of x at equilibrium? If this were 
the case, then one would have dissipation theories essentially uniquely determined (as far 
as the principal part of the equations concerns) solely from knowledge of the generating 
function at equilibrium. This seems to bkthe case if one formally writes x as a power series 
in  terms of the dissipative variables and-uses (3.2) to compute their coefficients in terms of 
the values of x at equilibrium (gab = 0). The constants of integration that appear in such 
a process can be eliminated by the condition of having an appropriate classical limit, so 
the determination of those coefficients in terms of values of ,y at equilibrium is essentially 
unique. General results concerning the above questions would be published elsewhere. As 
will be explained below, for this work we are only interested in knowing the dynamical 
equations near an equilibrium state, so we will obtain the generating function x by only 
considering terms up to the second derivative in dissipative variables. 

and scalars that can be constructed from cab (without loss of generality we can identify 
the variables (c, c,,, cub) of the divergence type theories with the 14-parameters (t, &,, cob)  
defined in the context of kinetic theory). We are interested in studying fluid states near 

The generating function x is a scalar so it has to depend only on 5, /L = 



A dilute gas as a dissipative relativisticfluid 6949 

equilibrium and, as we will, see below, we will be concerned with knowledge of M i B  in 
an equilibrium state. This matrix involves up to second derivatives in dissipative variables 
{*', then we will consider generating functions only up to terms of second order in the cub. 
higher order terms will not contribute to the principal parts of the equations at equilibrium. 
The most general expression up to second order in { O b  for x is 

with 
0 C" U = -  

P 
q"h = gUb f UYUh 

(1) - I 

(2) - 
- qu(c4d)h - g q u h q c d  

'uhcd - u(Oqb)(Cud) 

0) 3 q i h  - - ( - + u , u , ) - ( - + u c u d ) .  3 4cd 
4 ~3 sob,  - 

This follows since the right-hand side of (3.3) is the most general scalar function that can 
be constructed as a local function of 5. r", gab and up to second order in 5"'; and the Sa,,, 
(i = 1,2,3) produce the most general split of a symmetric trace-free tensor tub around a 
timelike direction u'. 

As stated before, to determine a unique fluid theory ofdivergence type we have to specify 
a generating function x (that is, in this case five functions X O ,  XI and (i = 1,2,3)) 
and a dissipation-source tensor I,. So to describe a dilute gas with a divergence type 
theory we have to give the appropriate functions x and In. However, since we are only 
interested in knowihg, whether this theory is causal or not and for that we need only to 
know the generating function x. the dissipation-source tensor I ,  is irrelevant and will not 
be considered from now on. 

The restriction that the right-hand side of (3.1) be totally symmetric imposes conditions 
on the generating function x .  that is conditions on functions X O ,  X I .  x$), (i = 1,2,3). At 
equilibrium, the functions ~0 and XI have to satisfy 

(i) 

(3.4) 

This expression gives us xI if ~0 is known. If we impose the condition that the right-hand 
side of (3.1) be symmetric not only at equilibrium, but also up to first order in dissipative 
variables, we obtain the following conditionst for ~ 2 ) :  

1 Equations (3.4H3.8) are related to equalions (A4) of [5] 
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where it can be seen that equation (3.8) is an integrability equation for (3,343.7). 
Knowledge of ,yo is thus sufficient to determine XI and x$' (i = 1,2.3). 

From these equations it can be seen that the main idea in [5] is the following: knowledge 
of an equilibrium fluid state (via kinetic theory) could give information about nearby non- 
equilibrium states if we impose the condition that the whole theory be of divergence type. 
This is because the function xo can be determined by kinetic theory and then XI is calculated 
from (3.4), and x:), (i = 1,2,3) from (3.3-04.7). With this generating function it is 
possible to build the mamx Mi8 at equilibrium. The main result of our work is to prove 
that for a dilute gas, this system of equations is not only hyperbolic, but also causal, in the 
sense given above. 
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4. Causality of dilute gases 

The function xo only contains information about equilibrium fluid states. This information is 
sufficient to construct the complete generating function x up to second order in dissipative 
variables, integrating system (3.4)-(3.7). In this section we integrate this system with a 
function xo obtained from kinetic theory, as we show below. Finally we study causal 
properties of the theory obtained. 

It is known [4] that at equilibrium we have 

In these states, all the moments, Ju'"''"I~ (where IE means evaluation in an equilibrium state), 
can be calculated from the distribution function at this equilibrium state. For instance, for 
the first moment we have [5] 

where z = a j k ,  y = m/(kT). 

as follows 
However, from divergence type theories restrictions, N"IE is related to the function xo 

N'IE =nu" = -xo.rpuU. 

So from kinetic theory, the function ~ 0 , ~ ~  in terms of the equilibrium distribution function 
is given by 

sinh2(r) cosh(r) 
xo.tp = -4nqm3 J dr. 

o exp(-z + y cosh@)) - E 

With this input we can solve the system (3.4X3.8) or equivalently the following system 
written in terms of dimensionless variables z and y :  
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exp(-z + y cosh@)) - s dr 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

with n l ,  nz non-negative integers, and A;(z) (i = 1,2,3) integration constants in variable 
Y. 

Once we have the generating function x ;  we can compute the corresponding matrix 
M ; B I ~ ,  and study its causal properties. As stated above, causality means that the 
characteristic velocities are less than the speed of light. So the rest of our work will 
be concerned with calculating these characteristic velocities for the system associated with 
the matrix M:,. If there exists a vector w" such that det(o,M;,) = 0 then this vector 
is normal to a characteristic surface. .The condition of causality means that this surface is 
timelike, that is ma is spacelike. If we write my = uuy + U' with u"u, = 1 and U%, = 0, 
then the system is causal if the characteristic velocities U satisfies U' < 1. We will prove 
here this last statement for the solution (4.1)-(4.5). 

The matrix NAB E -wUM; , I~  +es a particularly simple form when one chooses the 
following basis: 

sv = {SZ, s y ,  65s. su', srt;, srt;*) 

sy,, = -2s$;du9<;d 

where the symbol 8 indicate small variation from an equilibrium state, and 

s c h b  = $,~,,6<"' 

We still have the freedom to choose the coordinates to write the system of equations. If we 
choose the spacelike vector U" as we said before 

w" = uua  4- uu 

with u"u, = 0, v'u, = 1, then we can choose locally the coordinate xo as the integral lines 
of un,  and x' as the integral lines of vu. So we can have 

SqA = {SZ, s y ,  651, su',  sr:, sc:1, 6 2 ,  sr:, sr:2, 6u3, sr;, S r i 3 ,  @:z}. 
In this basis, the maaix NAB takes the following block diagonal form: 

L o  o o N ~ - I  
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where the submatrix N I ,  is defined as 
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0 2% 
m; Y 

n -- vn.Y ,"k X I  .ZY 

- ~ x l , z v  - 5 X l . w  - 3 x z , ,  
un.Y -_ ; P.Y -$X1,yy - i ( P + P )  p 1  0 

0 4 4 
-$I  3 2  

(3 )  

4 NI=[ n - i ( P + P )  -7g1 :Y(P+P) -vg1 41111 3 m k  4 y 
2 Xl.2 1 4 2" (2) ;a y g 2  -w - p x z . y  &g3 -- 

mk Y 
4 1 2  4 4 v ( 1 )  

3 3  - ? Z X z . y  
-_ 
3 m k  y 0 0 0 

with 

The characteristics velocities can be calculated splitting matrix NAB by these blocks. It 
is obvious that the characteristic velocities corresponding to N 3  vanish. Next consider the 
blocks associated with Nz. It is a 3 x 3 determinant, so it leads to three possible values for 
U. One of these is zero. The other two have the following expression: 

2m6kglg3x1 + m6kzy(p  + p ) ( g d 2  - 2 m Z ( x d 2 x : ~  

k 2 ~ 2 x i , 1 : ( 2 ~  (P + P)X:?; + m 4 W )  
(U# = (4.7) 

These characteristic velocities are called transverse, because they are related to the 
propagation of transverse perturbations, that is in our case, perturbations in the x 2  and 
x 3  directions. 

There are six characteristics velocities associated with matrix N I .  These characteristic 
velocities are called longitudinal, because they are related to the propagation of longitudinal 
perturbations, that is in our case, perturbations in the x z  direction. It can be seen that two 
of these are zero, and the others are solution of an expression of the form 

B z ( % ) ~  + BI (~3' + Bo = 0 (4.8) 

with Bi (i = 0, 1.2) complicated expressions of the generating function. So we have 
to prove that all characteristic velocities satisfy uz c 1. In the next two subsections we 
will show that this is the case for divergence type theories in which the equilibrium states 
correspond to Boltzmann, Fermi or Bose dilute gases. 

Before presenting our principal results on the characteristic velocities of these theories, 
we have to comment on the choice of constants of integration (constant in y but functions 
of z) presented in (4.2)-(4.5). It can be seen that different selections of functions Al(z )  and 
A3(z) give us different physical theories. If we calculate the corresponding characteristic 
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0.1 

0.05- -  

Figure 1. "he longitudinal ( " ~ 1 ,  " ~ 2 )  and Vansverse (UT) characteristic velocities, as functions of 
y = mcz/kT for Boltrmann's dilute gas. The asymptotic formulae given in the text determine 
v for all y .  It is possible to draw similar plots for Fermi and Bose dilute gases. 

velocities for each selection of these functions then it can be checked that the only choice 
which gives us the appropriate classical limit (that is y -+ 00) is A l ( z )  = A ~ ( z )  = 0. The 
other function, A ~ ( z ) ,  does.not affect any physical property of the fluid, because it does not 
appear in the matrix M:*. This is a consequence of the following: the only coefficients 
without y-derivatives of xz (i = 1,2,3) are expressions involving functions gz or g3. 
However, these functions do not depend on A&). So, from now on, we will assume that 
functions Ai(z )  (i '= 1,2 ,3)  are all zero. 

(0 

4.1. Resultsfor Boltzmann equilibrium distribution function 

We recover the Boltzmann case by letting E 3 0 in the above expressions, that is we 
consider the following distribution function: 

(4.9) 

In this case the integrals Jm.n can be expressed [5] in terms of modified Bessel function of 
the second kind: 

m 
K,(y) = cosh(nr)e-ycOsh(r) dr 

and it is possible to write a simple expression for the generating function in terms of these 
modified Bessel functions: 

(4.10) 2 ?K2 ~ 0 , ~ ~  = -4xi7m k -ez 
Y 

(4.11) 
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x,O' = 4rrqm6 2- + -- + -- ez, ( Y Z  K4 3 Y 3  4 K 3  2 " 1  Y 

(4.12) 

(4.13) 

(4.14) 

With these expressions for the generating function it is straightforward to compute the 
characteristic velocities. For example, expression (4.7) for transversal velocities can be 
written as 

[ I -  y 2 + 5 G y - 6 G 2  yZG2 1 G 
y + 6 G  

( U d Z  = - 

with G K,/Kz. In the same way we can solve (4.8) and obtain two roots for U; as a 
function of modified Bessel functions of the second kind. This expression is too complicated 
to give here, but its behaviour as function of y = mc2/kT is shown in figure 1. It is also 
shown there the behaviour of U:. All these results are in correspondence with previous 
ones in Stewart [9]  and Seccia and Strumia [8]. For example in the ultra-relativistic limit 
( y  + 0), we obtain 

where we prefer to write explicitly the light velocity c to clarify units. Recall that throughout 
this work we use the units c = 1. Another special case of interest is the classical limit 
( y  + 00) which gives 

k 7 k  
5 m  m m 

u t z  N 1.35-T. 
k 

U;, N 5.18-2" .;1 N ---T 

All these results agree with previous ones. 

. * .  t 0 . 0 0 1  

f . '  le-06 

I 1.3-07 
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Figure 3. The difference ( V U ) ~ I R ~ ~ ~  - ( U U ) ~ ~ S . ~ .  as a function of y = mc2/kT.  

4.2. Results for the Bose and Fermi equilibrium distribution functions 

We now consider the equilibrium distribution function as given by (2.11). In this case 
it is not even known whether the resultant divergence type theory is hyperbolic. In this 
subsection we prove causality of these divergence type theory, in the following way. First, 
we insert in (4.7) and (4.8) the expression for the generating function given in (4.1)<4.5), 
where E = 1 or -1 gives us a Bose or Fermi equilibrium distribution function, respectively. 
Second, we evaluate numerically the resultant expression for the characteristic velocities and 
confirm that they are strictly less than c. In these cases, that is Fermi and Bose statistics, 
we plot the characteristics velocities as a function of y ,  obtaining a very similar graph to 
that shown in figure 1 for Boltzmann statistics. Since they are very similar to the values for 
Boltzmann’s we just plot their differences.’ For example we show in figure 2 the difference 
(~Ll)~ienni - (ULI)’[Base. In figure 3 we do the same for VU. We can see that the maximum 
difference is reached when y - 1 that is when mc2 - kT. We also plot in figures 4 and 
5 the difference ( w d ’ l ~ ~ ~ m i  - (ULl)’lBo~mmn and~(UL1) [Bolmmunn - ( d i ~ ~ ~ ,  respectively. 
All the plots were done for the case z = 0, for if IzI >> 0, the plots become indistinguishable 
from those obtained with Boltzmann’s statistics (see the appendix). 

The limiting values of the characteristic velocities when y -+ CO or y + 0 for both 
statistics are the same as those we obtained for Boltzmann statistics. This can be seen 
analytically as follows. The fact that the classical limit of characteristic velocities for Fermi 
and Bose statistics gives the same results as those provided by Boltzmann statistics can 
be seen by the argument in the first point of the appendix. There we give an alternative 
form for the generating function (4.1h(4.5). From the expressions given in the appendix 
it is easy to check that in me limit y -+ CO we reobtain the values for the characteristic 
velocities calculated for a Boltzmann dilute gas. 

The second one, that  is the ultra-relativistic limit, is explained in the second point 
of the appendix. The principal idea was to rewrite the functions which appear in 
the generating function separating their divergent parts when y + 0. We calculate the 
characteristic velocities with these expressions, all divergences cancelled and we finally 
obtain the same values as for Boltzmann’s dilute gas. 

2 
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Figure 4. The difference ( V L I ) ~ I F ~ ~ ~  - ( ~ L I ) ~ ~ B ~ I ~ ~ ~  as a function of y = mc2/kT.  Note 
that the characteristic velociry for Fermi‘s gas isgreater than for Boltzmann’s gas, 

. .  

Figure 5. The difference ( v ~ ~ ) ~ l ~ ~ i ~ ~ ~ ~  - ( u ~ # l e . ~  as a function of y = mc2/kT,  Note that 
the characteristic velocity for Boltzmann’s gas is greater than for Bose‘s gas. 

5. Conclusions 

From both an aesthetic and economic, that is physical, point of view, one would like to find 
the simplest theory to describe a given physical system. Candidates with this property for 
describing dissipative relativistic fluids are the divergence type theories. As we reviewed 
in section 2, a dissipative relativistic fluid divergencetype theory is completely determined 
by a generating function x and a dissipation-source tensor Iub. The function x generates 
the principal part of the dynamical equations, giving an expression which is particularly 
simple and relatively easy to analyse. However, are these simple theories general enough 
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to describe those fluids correctly in some relevant regime? When they do describe them, 
do they have the hyperbolicity and causality properties that on physical grounds would be 
expected? Here we have tested these theories with the simplest system in this subject, that 
is a dilute gas. The first of these questions has been answered, but from a slightly different 
point of view in [ 5 ] .  In our treatment we derive an equation for x ,  equation (3.2), which 
expresses the identification, outside the equilibrium of a three-tensor constructed from x 
and the symmetric third momentum tensor of kinetic theory. We solved this equation up 
to second order in the dissipative variables-that is all that is needed  to^ show causality 
near equilibrium-and note that these terms are completely determinedt by the values of 
the generating function at equilibrium. That is the above identification selects a class of 
solutions whose causal behaviour seems to be determined completely from the value of 
measurable equilibrium quantities. We believed this to be an interesting conjecture even for 
regions away from equilibrium: The above identification, equation (3.2), determines a class 
of theories with the property that their principal part equations are completely determined 
from the values of x at equilibrium. We have already resolved this conjecture in some 
interesting cas= and the results will be published elsewhere. 

The second question raised above is the main result of this work; we could show that 
the divergence theory which represents Bose and Fermi dilute gasexare causal in the sense 
given in section 2. This was done by a straightforward calculation of the characteristics 
velocities of system given by matrix N, in the particular basis chosen. We found that all 
these velocities were positive and less than c. Due to the fact that the expression for these 
velocities are very complicated, we calculated the asymptotic expression when one of the 
variables tends to zero or infinity. For intermediate values we computed numerically these 
velocities. In all cases we found that they are all positive and less than c, which implies 
that the corresponding system of equation and so the corresponding theory, is causal. 

We tested the above calculation with a known example studied by Seccia and Stmmia 
[8], that is a Boltzmann dilute gas. Our results agree with them. These results for 
Boltzmann’s dilute gas also agree with previous ones in Stewart [9]. This agreement is 
not trivial, since Stewart obtained a causal theory doing approximations directly on the 
distribution function. It is not trivial, a priori, that this theory gives the same values for the 
characteristic velocities. 
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Appendix 

This appendix is dedicated to detailing some calculations needed to understand results for 
the Bose and Fermi equilibrium distribution functions. . 

(i) Equation (4.1) can be written as 

= - 4Z7y7z2k2(Jo,3 - J0.l) 

X O , ~ ~  = - 4 x ~ m ~ k ~ J z . 1  

m cosh’(r) 
= - 4ir77m2k2 dr 

exp(-z + y cosh(r)) - E  

t Up to integration constants which do not affect the system. 
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dr cosh(r) 
exp(-i + y cosh@)) - E 

lm exp(-z + y cosh(r)) - E  

+4rr qmzk2 im 
cosh(3r) 

cosh(r) 

= - 4 n q m  k - dr 

+ 4 q m  k - dr 

* 

': lm exp(-z + y cosh@)) - E  

l W  - - - 4xqm2k2- ~ ( - E ) ( ' - ' ) &  c o ~ h ( 3 r ) e - ~ ~ ~ ~ ( ~ ) d r  
4 1=1 

m 

+4rrqm2k21 ~(-E)('-')e' ' ~ o s h ( r ) e ~ ~ ~ ~ ~ ~ ~ ' )  dr 
4 1=1 

where, in the first step, we write functions J,,, in terms of functions of the form Jo,"; the 
next step is to use trigonometric identities to write terms with coshn(r) in terms of cosh(nr); 
then we compute the asymptotic expression for large IzI and finally we write this expression 
in terms of the modified Bessel functions of the second kind. By the same way we obtain 
the following expressions: 

From these expressions we can see that the first term corresponds to the generating function 
calculated with Boltzmann's equilibrium distribution function. These expressions together 
with the asymptotic behaviour of modified Bessel functions of the second kind K,,(y) when 
y --f CO tells us that limiting expression for the characteristic velocities will be the same 
as that we calculated for Boltzmann's dilute gas. 

(ii) The limiting expressions when y 3 0, can be'obtained in the following way: 

where we have only changed the variable n = y cosh(r) which allows us to identify the 
divergent part of J,," when y --f 0. If we expand the non-divergent part of Jm," around 
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y = 0, and retaining the leading order in y ,  we have 

and evaluating this expression in z = 0, we obtain a simple expression for Jm." in terms of 
the Riemann zeta function, C(n) 

r ( m + n ) ( ( m + n )  & = I  1 
Jm.nlr=O y(m+n) 

1 1 
- - - (1 - mi> r ( m  + n)C(m + n) E = -1. 

Wi-4 

In order to calculate the characteristic velocities we also need to h o w  

r ( m  + n ) ( ( m  + n  - 1) E = 1 
1 

So, with these expressions we mive at the limiting values for the characteristic velocities 
for Fermi and Bose sktistics, giving the same results obtained for Boltzmann statistics. 
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